1 // Copyright 2001 Google Inc. All Rights Reserved. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS-IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 // Converted to D: madric@gmail.com (Vijay Nayar) 16 17 module s2.util.math.mathutil; 18 19 import s2.util.math.s2const; 20 21 import math = std.math; 22 23 bool realRootsForCubic( 24 in real a, 25 in real b, 26 in real c, 27 out real r1, 28 out real r2, 29 out real r3) { 30 // According to Numerical Recipes (pp. 184-5), what 31 // follows is an arrangement of computations to 32 // compute the roots of a cubic that minimizes 33 // roundoff error (as pointed out by A.J. Glassman). 34 35 const real a_squared = a * a; 36 const real a_third = a / 3.0; 37 const real b_tripled = 3.0 * b; 38 const real Q = (a_squared - b_tripled) / 9.0; 39 const real R = (2.0 * a_squared * a - 3.0 * a * b_tripled + 27.0 * c) / 54.0; 40 41 const real R_squared = R * R; 42 const real Q_cubed = Q * Q * Q; 43 44 if (R_squared < Q_cubed) { 45 const real root_Q = math.sqrt(Q); 46 const real two_pi_third = 2.0 * M_PI / 3.0; 47 const real theta_third = math.acos(R / math.sqrt(Q_cubed)) / 3.0; 48 const real minus_two_root_Q = -2.0 * root_Q; 49 50 r1 = minus_two_root_Q * math.cos(theta_third) - a_third; 51 r2 = minus_two_root_Q * math.cos(theta_third + two_pi_third) - a_third; 52 r3 = minus_two_root_Q * math.cos(theta_third - two_pi_third) - a_third; 53 54 return true; 55 } 56 57 const real A = -math.signbit(R) 58 * math.pow(math.abs(R) + math.sqrt(R_squared - Q_cubed), 1.0 / 3.0L); 59 60 if (A != 0.0) { // in which case, B from NR is zero 61 r1 = A + Q / A - a_third; 62 return false; 63 } 64 65 r1 = r2 = r3 = -a_third; 66 return true; 67 }